Covariance Estimation for High Dimensional Data Vectors Using the Sparse Matrix Transform
نویسندگان
چکیده
Covariance estimation for high dimensional vectors is a classically difficult problem in statistical analysis and machine learning. In this paper, we propose a maximum likelihood (ML) approach to covariance estimation, which employs a novel sparsity constraint. More specifically, the covariance is constrained to have an eigen decomposition which can be represented as a sparse matrix transform (SMT). The SMT is formed by a product of pairwise coordinate rotations known as Givens rotations. Using this framework, the covariance can be efficiently estimated using greedy minimization of the log likelihood function, and the number of Givens rotations can be efficiently computed using a cross-validation procedure. The resulting estimator is positive definite and well-conditioned even when the sample size is limited. Experiments on standard hyperspectral data sets show that the SMT covariance estimate is consistently more accurate than both traditional shrinkage estimates and recently proposed graphical lasso estimates for a variety of different classes and sample sizes.
منابع مشابه
A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملJPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملConsistency of Restricted Maximum Likelihood Estimators of Principal Components by Debashis Paul1 And
In this paper we consider two closely related problems: estimation of eigenvalues and eigenfunctions of the covariance kernel of functional data based on (possibly) irregular measurements, and the problem of estimating the eigenvalues and eigenvectors of the covariance matrix for highdimensional Gaussian vectors. In [A geometric approach to maximum likelihood estimation of covariance kernel fro...
متن کاملA Note on Moment Inequality for Quadratic Forms
Moment inequality for quadratic forms of random vectors is of particular interest in covariance matrix testing and estimation problems. In this paper, we prove a Rosenthal-type inequality, which exhibits new features and certain improvement beyond the unstructured Rosenthal inequality of quadratic forms when dimension of the vectors increases without bound. Applications to test the block diagon...
متن کاملPosterior Contraction in Sparse Bayesian Factor Models for Massive Covariance
Sparse Bayesian factor models are routinely implemented for parsimonious dependence modeling and dimensionality reduction in highdimensional applications. We provide theoretical understanding of such Bayesian procedures in terms of posterior convergence rates in inferring high-dimensional covariance matrices where the dimension can be potentially larger than the sample size. Under relevant spar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008